organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(*Z*)-(4-Ethoxyphenylamino)(phenyl)methylene]-3-methyl-1-phenyl-1*H*pyrazol-5(4*H*)-one

Rui Ma,^a Ying Chen,^b Zhong-Ying Song,^b Yi-Qiong Bai^b and Feng Bao^b*

^aDepartment of Materials Science and Chemical Engineering, China University of Geosciences, Wuhan 430074, People's Republic of China, and ^bDepartment of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: baofengstorm@126.com

Received 29 May 2007; accepted 1 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.211; data-to-parameter ratio = 16.9.

The structure of the title compound, $C_{25}H_{23}N_3O_2$, features a central pyrazole ring; an amine NH unit interacts with the ring CO unit through an intramolecular N-H···O hydrogen bond [N···O = 2.700 (2) Å]

Related literature

For related structures, see: Bao, Lü, Wu, Kang & Ng (2004); Bao, Lü, Wu, & Ng (2004); Jiang *et al.* (2004). For related literature, see: Bao *et al.* (2006).

a = 6.9269 (9) Åb = 10.7876 (14) Åc = 15.531 (2) Å

Experimental

Crystal	data
C ₂₅ H ₂₃ N	$_{3}O_{2}$
$M_r = 397$	7.46
Triclinic,	$P\overline{1}$

$\alpha = 71.900(2)$	
$\beta = 78.994 \ (2)^{\circ}$	
$\gamma = 81.296 \ (3)^{\circ}$	
$V = 1077.9 (2) \text{ Å}^3$	
7 - 2	

Data collection

71 066 (2)

Bruker SMART CCD diffractometer Absorption correction: none 8649 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.053 & 271 \text{ parameters} \\ wR(F^2) &= 0.211 & H\text{-atom parameters constrained} \\ S &= 0.70 & \Delta\rho_{\text{max}} = 0.16 \text{ e } \text{ Å}^{-3} \\ 4588 \text{ reflections} & \Delta\rho_{\text{min}} = -0.17 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	H···A	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdots O1$	0.86	1.98	2.700 (3)	140

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

4588 independent reflections

2518 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int} = 0.059$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank Central China Normal University for supporting this work. The support of the Education Bureau of Hubei Province (project D2006–28004) and the Technologies R&D Programme of Hubei Province (2005 A A401D57, 2006 A A101C39) is gratefully acknowledged. We thank Mr Meng for single-crystal X-ray technical assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2438).

References

- Bao, F., Chen, Y. & Ng, S. W. (2006). Acta Cryst. E62, 04186-04187.
- Bao, F., Lü, X., Wu, Q., Kang, B. & Ng, S. W. (2004). Acta Cryst. E60, o155–o156.
- Bao, F., Lü, X.-Q., Wu, Q. & Ng, S. W. (2004). Acta Cryst. E60, o1244–o1245. Bruker (1997). SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jiang, J.-J., Lü, X.-Q., Bao, F., Kang, B.-S. & Ng, S. W. (2004). Acta Cryst. E60, 01149–01150.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

03158 © 2007 International Union of Crystallography

Acta Cryst. (2007). E63, o3158 [doi:10.1107/S1600536807026992]

4-[(Z)-(4-Ethoxyphenylamino)(phenyl)methylene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

R. Ma, Y. Chen, Z.-Y. Song, Y.-Q. Bai and F. Bao

Comment

This study is a continuation of our investigations of 4-(*Z*)- [(4-ethoxyphenylamino)(phenyl)methylene]-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-ones, which are readily synthesized by condensing 4-benzoyl-3-methyl-1- phenyl-5-pyrazolone with a primary amine (Bao, Lü, Wu, Kang & Ng, 2004; Bao, Lü, Wu, & Ng, 2004; Jiang *et al.*, 2004). A characteristic of such pyrazolones is the short intramolecular hydrogen bond between the amino NH unit and the carbonyl C=O unit.

The title compound, (I), (Fig. 1), similarly exists as a monomeric molecule that features an intramolecular N—H…O hydrogen bond (Table 1) despite the presence of possible acceptor atoms in nearby molecules.

Experimental

4-Benzoyl-3-methyl-1-phenyl-5-pyrazolone (1.20 g, 4.3 mmol) and 4-ethoxybenzenamine (0.62 g, 6.5 mmol) were dissolved in ethyl alcohol (20 ml). The solution was heated under reflux for 8 h. The solvent was removed and the pure product obtained upon recrystallization from ethyl alcohol (25 ml) in about 80% yield. Crystals of (I) were grown from ethanol at room temperature. Analysis calculated for $C_{25}H_{23}N_3O_2$: C 75.55, H 5.83, N 10.57%; found: C 75.52, H 5.85, N 10.58%.

Refinement

All H atoms were geometrically placed (C—H = 0.93–0.97 Å, O—H = 0.82 Å, N—H = 0.85–0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O,N)$.

Figures

Fig. 1. Vew of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius and the hydrogen bond is indicated by a double-dashed line.

4-[(Z)-(4-Ethoxyphenylamino)(phenyl)methylene]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one

Crystal data	
$C_{25}H_{23}N_3O_2$	Z = 2
$M_r = 397.46$	$F_{000} = 420$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.225 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 6.9269 (9) Å	Cell parameters from 1701 reflections
b = 10.7876 (14) Å	$\theta = 2.8 - 23.3^{\circ}$
c = 15.531 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 71.966 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 78.994 \ (2)^{\circ}$	Block, yellow
$\gamma = 81.296 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
V = 1077.9 (2) Å ³	

Data collection

Bruker SMART CCD diffractometer	2518 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.059$
Monochromator: graphite	$\theta_{\text{max}} = 27.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.0^{\circ}$
ω scans	$h = -6 \rightarrow 8$
Absorption correction: none	$k = -12 \rightarrow 13$
8649 measured reflections	$l = -19 \rightarrow 19$
4588 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.211$	$w = 1/[\sigma^2(F_o^2) + (0.1794P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.70	$(\Delta/\sigma)_{\rm max} < 0.001$
4588 reflections	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
271 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

$O2$ $0.3867 (2)$ $0.78662 (17)$ $0.05284 (11)$ $0.0580 (5)$ N1 $1.2631 (3)$ $1.14403 (18)$ $0.30935 (12)$ $0.0503 (5)$ O1 $1.1023 (2)$ $1.17814 (16)$ $0.18320 (10)$ $0.0597 (5)$ N3 $0.9036 (3)$ $0.9699 (2)$ $0.20785 (13)$ $0.0552 (5)$ H3A 0.9570 1.0391 0.1736 0.066^* N2 $1.2852 (3)$ $1.04592 (18)$ $0.39146 (12)$ $0.0517 (5)$ C11 $0.9511 (3)$ $0.9213 (2)$ $0.29198 (15)$ $0.0461 (5)$ C21 $0.5236 (3)$ $0.8295 (2)$ $0.08632 (14)$ $0.0483 (5)$ C7 $1.1391 (3)$ $1.1128 (2)$ $0.26106 (14)$ $0.0479 (5)$ C18 $0.7734 (3)$ $0.9196 (2)$ $0.16823 (15)$ $0.0468 (5)$ C8 $1.0718 (3)$ $0.9901 (2)$ $0.31896 (14)$ $0.0450 (5)$ C11 $1.3747 (3)$ $1.2522 (2)$ $0.28323 (15)$ $0.0495 (6)$ C12 $0.8815 (3)$ $0.7945 (2)$ $0.35031 (15)$ $0.0461 (2)$ C13 $0.9530 4$ 0.9350 0.2596 0.075^* C23 $0.8423 (4)$ $0.8833 (3)$ $0.08965 (15)$ $0.0612 (7)$ H13A 1.0421 0.6854 0.2727 0.072^* C20 $0.4556 (4)$ $0.8647 (3)$ $0.16570 (17)$ $0.0620 (7)$ H20A 0.3240 0.8575 0.1923 0.074^* C2 $1.2973 (4)$ $1.3750 (2)$ 0.3400 0.073^* C2 $1.2973 (4)$ $0.7871 (2)$ 0.3400 <		x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1 $1.2631 (3)$ $1.14403 (18)$ $0.30935 (12)$ $0.0503 (5)$ O1 $1.1023 (2)$ $1.17814 (16)$ $0.18320 (10)$ $0.0597 (5)$ N3 $0.9036 (3)$ $0.9699 (2)$ $0.20785 (13)$ $0.0552 (5)$ H3A 0.9570 1.0391 0.1736 $0.066*$ N2 $1.2852 (3)$ $1.04592 (18)$ $0.39146 (12)$ $0.0517 (5)$ C11 $0.9511 (3)$ $0.9213 (2)$ $0.29198 (15)$ $0.0461 (5)$ C21 $0.5236 (3)$ $0.8295 (2)$ $0.08632 (14)$ $0.0483 (5)$ C7 $1.1391 (3)$ $1.1128 (2)$ $0.26106 (14)$ $0.0479 (5)$ C18 $0.7734 (3)$ $0.9196 (2)$ $0.16823 (15)$ $0.0499 (6)$ C9 $1.1726 (3)$ $0.9562 (2)$ $0.39721 (14)$ $0.0466 (5)$ C11 $1.3747 (3)$ $1.2522 (2)$ $0.28323 (15)$ $0.0495 (6)$ C12 $0.8815 (3)$ $0.7945 (2)$ $0.35031 (15)$ $0.0462 (7)$ H19A 0.5305 0.9350 0.2596 $0.075*$ C23 $0.8423 (4)$ $0.8833 (3)$ $0.08965 (15)$ $0.0612 (7)$ H23A 0.9745 0.8891 0.0639 $0.073*$ C13 $0.9534 (4)$ 0.8875 0.1923 $0.074*$ C24 $1.2973 (4)$ $1.3750 (2)$ $0.33641 (17)$ $0.0605 (7)$ H2B 1.1738 1.3858 0.2169 $0.074*$ C17 $0.7493 (4)$ $0.7871 (2)$ $0.43025 (16)$ $0.0596 (6)$ H17A 0.7010 0.8265 0.4476 $0.072*$ <td>O2</td> <td>0.3867 (2)</td> <td>0.78662 (17)</td> <td>0.05284 (11)</td> <td>0.0580 (5)</td>	O2	0.3867 (2)	0.78662 (17)	0.05284 (11)	0.0580 (5)
O1 1.1023 (2) 1.17814 (16) 0.18320 (10) 0.0597 (5)N3 0.9036 (3) 0.9699 (2) 0.20785 (13) 0.0552 (5)H3A 0.9570 1.0391 0.1736 $0.066*$ N2 1.2852 (3) 1.04592 (18) 0.39146 (12) 0.0517 (5)C11 0.9511 (3) 0.9213 (2) 0.29198 (15) 0.0461 (5)C21 0.5236 (3) 0.8295 (2) 0.08632 (14) 0.0483 (5)C7 1.1391 (3) 1.1128 (2) 0.26106 (14) 0.0479 (5)C18 0.7734 (3) 0.9196 (2) 0.16823 (15) 0.0499 (6)C9 1.1726 (3) 0.9562 (2) 0.39721 (14) 0.0468 (5)C8 1.0718 (3) 0.9901 (2) 0.31896 (14) 0.0450 (5)C12 0.8815 (3) 0.7945 (2) 0.35031 (15) 0.0466 (5)C1 1.3747 (3) 1.2522 (2) 0.28323 (15) 0.0495 (6)C19 0.5790 (4) 0.9105 (3) 0.20650 (17) 0.6622 (7)H19A 0.5305 0.9350 0.2596 $0.075*$ C23 0.8423 (4) 0.8831 (3) 0.08965 (15) 0.0612 (7)H23A 0.9745 0.8891 0.0639 $0.073*$ C13 0.9534 (4) 0.6854 0.2727 $0.072*$ C20 0.4556 (4) 0.8647 (3) 0.16570 (17) 0.0620 (7)H20A 0.3240 0.8575 0.1923 $0.074*$ C4 1.5599 (4) 1.2363 (3) 0.30841 (17) 0.0	N1	1.2631 (3)	1.14403 (18)	0.30935 (12)	0.0503 (5)
N3 0.9036 (3) 0.9699 (2) 0.20785 (13) 0.0552 (5) H3A 0.9570 1.0391 0.1736 0.066* N2 1.2852 (3) 1.04592 (18) 0.39146 (12) 0.0517 (5) C11 0.9511 (3) 0.9213 (2) 0.29198 (15) 0.0461 (5) C21 0.5236 (3) 0.8295 (2) 0.08632 (14) 0.0483 (5) C7 1.1391 (3) 1.1128 (2) 0.26106 (14) 0.0479 (5) C18 0.7734 (3) 0.9196 (2) 0.16823 (15) 0.0499 (6) C9 1.1726 (3) 0.9562 (2) 0.39721 (14) 0.0468 (5) C11 1.3747 (3) 1.2522 (2) 0.31896 (14) 0.0450 (5) C12 0.8815 (3) 0.7945 (2) 0.35031 (15) 0.0466 (5) C1 1.3747 (3) 1.2522 (2) 0.28323 (15) 0.0495 (6) C19 0.5790 (4) 0.9105 (3) 0.20650 (17) 0.0622 (7) H19A 0.5305 0.9350 0.2596 0.073* C23 0.8423 (4) 0.8833 (3)	01	1.1023 (2)	1.17814 (16)	0.18320 (10)	0.0597 (5)
H3A0.95701.03910.17360.066*N21.2852 (3)1.04592 (18)0.39146 (12)0.0517 (5)C110.9511 (3)0.9213 (2)0.29198 (15)0.0461 (5)C210.5236 (3)0.8295 (2)0.08632 (14)0.0483 (5)C71.1391 (3)1.1128 (2)0.26106 (14)0.0479 (5)C180.7734 (3)0.9196 (2)0.16823 (15)0.0499 (6)C91.1726 (3)0.9562 (2)0.39721 (14)0.0468 (5)C120.8815 (3)0.7945 (2)0.31896 (14)0.0450 (5)C120.8815 (3)0.7945 (2)0.35031 (15)0.0466 (5)C11.3747 (3)1.2522 (2)0.28323 (15)0.0495 (6)C190.5790 (4)0.9105 (3)0.20650 (17)0.0622 (7)H19A0.53050.93500.25960.075*C230.8423 (4)0.8833 (3)0.08965 (15)0.0612 (7)H23A0.97450.88910.06390.073*C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760	N3	0.9036 (3)	0.9699 (2)	0.20785 (13)	0.0552 (5)
N2 $1.2852 (3)$ $1.04592 (18)$ $0.39146 (12)$ $0.0517 (5)$ C11 $0.9511 (3)$ $0.9213 (2)$ $0.29198 (15)$ $0.0461 (5)$ C21 $0.5236 (3)$ $0.8295 (2)$ $0.08632 (14)$ $0.0483 (5)$ C7 $1.1391 (3)$ $1.1128 (2)$ $0.26106 (14)$ $0.0479 (5)$ C18 $0.7734 (3)$ $0.9196 (2)$ $0.16823 (15)$ $0.0499 (6)$ C9 $1.1726 (3)$ $0.9562 (2)$ $0.39721 (14)$ $0.0468 (5)$ C1 $0.8815 (3)$ $0.9901 (2)$ $0.31896 (14)$ $0.0450 (5)$ C12 $0.8815 (3)$ $0.7945 (2)$ $0.35031 (15)$ $0.0466 (5)$ C1 $1.3747 (3)$ $1.2522 (2)$ $0.28323 (15)$ $0.0495 (6)$ C19 $0.5790 (4)$ $0.9105 (3)$ $0.20650 (17)$ $0.0622 (7)$ H19A 0.5305 0.9350 0.2596 $0.075*$ C23 $0.8423 (4)$ $0.8833 (3)$ $0.08965 (15)$ $0.0612 (7)$ H23A 0.9745 0.8891 0.6639 $0.073*$ C13 $0.9534 (4)$ $0.6814 (2)$ $0.32642 (18)$ $0.598 (6)$ H13A 1.0421 0.6854 0.2727 $0.072*$ C20 $0.4556 (4)$ $0.8647 (3)$ $0.16570 (17)$ $0.0620 (7)$ H20A 0.3240 0.8575 0.1923 $0.074*$ C4 $1.5599 (4)$ $1.2363 (3)$ $0.30841 (17)$ $0.0613 (7)$ H2B 1.1738 1.3858 0.2169 $0.074*$ C17 $0.7493 (4)$ $0.7871 (2)$ $0.43025 (16)$ $0.596 (6)$	НЗА	0.9570	1.0391	0.1736	0.066*
C11 $0.9511(3)$ $0.9213(2)$ $0.29198(15)$ $0.0461(5)$ C21 $0.5236(3)$ $0.8295(2)$ $0.08632(14)$ $0.0483(5)$ C7 $1.1391(3)$ $1.1128(2)$ $0.26106(14)$ $0.0479(5)$ C18 $0.7734(3)$ $0.9196(2)$ $0.16823(15)$ $0.0499(6)$ C9 $1.1726(3)$ $0.9562(2)$ $0.39721(14)$ $0.0468(5)$ C1 $0.7734(3)$ $0.9901(2)$ $0.31896(14)$ $0.0450(5)$ C12 $0.8815(3)$ $0.7945(2)$ $0.35031(15)$ $0.0466(5)$ C1 $1.3747(3)$ $1.2522(2)$ $0.28323(15)$ $0.0495(6)$ C19 $0.5790(4)$ $0.9105(3)$ $0.20650(17)$ $0.0622(7)$ H19A 0.5305 0.9350 0.2596 $0.77*$ C23 $0.8423(4)$ $0.8833(3)$ $0.08965(15)$ $0.0612(7)$ H23A 0.9745 0.8891 0.0639 $0.073*$ C13 $0.9534(4)$ $0.6814(2)$ $0.32642(18)$ $0.0598(6)$ H13A 1.0421 0.6854 0.2727 $0.072*$ C20 $0.4556(4)$ $0.8647(3)$ $0.16570(17)$ $0.0620(7)$ H20A 0.3240 0.8575 0.1923 $0.074*$ C4 $1.5799(4)$ $1.2363(3)$ $0.30841(17)$ $0.0605(7)$ H6A 1.6127 1.1539 0.3400 $0.073*$ C2 $1.2973(4)$ $1.3750(2)$ $0.23493(17)$ $0.0613(7)$ H2B 1.1738 1.3858 0.2169 $0.074*$ C17 $0.7493(4)$ $0.7871(2)$ 0.4	N2	1.2852 (3)	1.04592 (18)	0.39146 (12)	0.0517 (5)
C21 0.5236 (3) 0.8295 (2) 0.08632 (14) 0.0483 (5)C7 1.1391 (3) 1.1128 (2) 0.26106 (14) 0.0479 (5)C18 0.7734 (3) 0.9196 (2) 0.16823 (15) 0.0499 (6)C9 1.1726 (3) 0.9562 (2) 0.39721 (14) 0.0468 (5)C12 0.8815 (3) 0.7945 (2) 0.31896 (14) 0.0450 (5)C11 1.3747 (3) 1.2522 (2) 0.28323 (15) 0.0496 (6)C19 0.5790 (4) 0.9105 (3) 0.20650 (17) 0.0622 (7)H19A 0.5305 0.9350 0.2596 $0.075*$ C23 0.8423 (4) 0.8833 (3) 0.08965 (15) 0.0612 (7)H23A 0.9745 0.8891 0.0639 $0.073*$ C13 0.9534 (4) 0.6814 (2) 0.32642 (18) 0.0598 (6)H13A 1.0421 0.6854 0.2727 $0.072*$ C20 0.4556 (4) 0.8647 (3) 0.16570 (17) 0.0620 (7)H20A 0.3240 0.8575 0.1923 $0.074*$ C6 1.5599 (4) 1.2363 (3) 0.30841 (17) 0.0605 (7)H2B 1.1738 1.3858 0.2169 $0.074*$ C17 0.7493 (4) 0.7871 (2) 0.43025 (16) 0.0596 (6)H17A 0.7010 0.8625 0.4476 $0.072*$ C22 0.7190 (4) 0.8383 (3) 0.04823 (15) 0.0601 (7)	C11	0.9511 (3)	0.9213 (2)	0.29198 (15)	0.0461 (5)
C7 $1.1391(3)$ $1.1128(2)$ $0.26106(14)$ $0.0479(5)$ C18 $0.7734(3)$ $0.9196(2)$ $0.16823(15)$ $0.0499(6)$ C9 $1.1726(3)$ $0.9562(2)$ $0.39721(14)$ $0.0468(5)$ C8 $1.0718(3)$ $0.9901(2)$ $0.31896(14)$ $0.0450(5)$ C12 $0.8815(3)$ $0.7945(2)$ $0.35031(15)$ $0.0466(5)$ C1 $1.3747(3)$ $1.2522(2)$ $0.28323(15)$ $0.0495(6)$ C19 $0.5790(4)$ $0.9105(3)$ $0.20650(17)$ $0.0622(7)$ H19A 0.5305 0.9350 0.2596 $0.075*$ C23 $0.8423(4)$ $0.8833(3)$ $0.08965(15)$ $0.0612(7)$ H23A 0.9745 0.8891 0.0639 $0.73*$ C13 $0.9534(4)$ $0.6814(2)$ $0.32642(18)$ $0.598(6)$ H13A 1.0421 0.6854 0.2727 $0.072*$ C20 $0.4556(4)$ 0.8575 0.1923 $0.074*$ C6 $1.5599(4)$ $1.2363(3)$ $0.30841(17)$ $0.0605(7)$ H6A 1.6127 1.1539 0.3400 $0.073*$ C2 $1.2973(4)$ $1.3750(2)$ $0.23493(17)$ $0.0613(7)$ H2B 1.1738 1.3858 0.2169 $0.074*$ C17 $0.7493(4)$ $0.7871(2)$ $0.43025(16)$ $0.0596(6)$ H17A 0.7010 0.8625 0.4476 $0.072*$ C22 $0.7190(4)$ $0.8383(3)$ $0.04823(15)$ $0.0601(7)$	C21	0.5236 (3)	0.8295 (2)	0.08632 (14)	0.0483 (5)
C18 0.7734 (3) 0.9196 (2) 0.16823 (15) 0.0499 (6)C9 1.1726 (3) 0.9562 (2) 0.39721 (14) 0.0468 (5)C8 1.0718 (3) 0.9901 (2) 0.31896 (14) 0.0450 (5)C12 0.8815 (3) 0.7945 (2) 0.35031 (15) 0.0466 (5)C1 1.3747 (3) 1.2522 (2) 0.28323 (15) 0.0495 (6)C19 0.5790 (4) 0.9105 (3) 0.20650 (17) 0.0622 (7)H19A 0.5305 0.9350 0.2596 $0.075*$ C23 0.8423 (4) 0.8833 (3) 0.08965 (15) 0.0612 (7)H23A 0.9745 0.8891 0.0639 $0.073*$ C13 0.9534 (4) 0.6814 (2) 0.32642 (18) 0.0598 (6)H13A 1.0421 0.6854 0.2727 $0.072*$ C20 0.4556 (4) 0.8647 (3) 0.16570 (17) 0.0620 (7)H20A 0.3240 0.8575 0.1923 $0.074*$ C6 1.5599 (4) 1.2363 (3) 0.30841 (17) 0.0605 (7)H6A 1.6127 1.1539 0.3400 $0.073*$ C2 1.2973 (4) 1.3750 (2) 0.23493 (17) 0.0613 (7)H2B 1.1738 1.3858 0.2169 $0.074*$ C17 0.7493 (4) 0.7871 (2) 0.43025 (16) 0.0596 (6)H17A 0.7010 0.8823 (3) 0.04823 (15) 0.0617 (7)	C7	1.1391 (3)	1.1128 (2)	0.26106 (14)	0.0479 (5)
C91.1726 (3)0.9562 (2)0.39721 (14)0.0468 (5)C81.0718 (3)0.9901 (2)0.31896 (14)0.0450 (5)C120.8815 (3)0.7945 (2)0.35031 (15)0.0466 (5)C11.3747 (3)1.2522 (2)0.28323 (15)0.0495 (6)C190.5790 (4)0.9105 (3)0.20650 (17)0.0622 (7)H19A0.53050.93500.25960.075*C230.8423 (4)0.8833 (3)0.08965 (15)0.0612 (7)H23A0.97450.88910.06390.073*C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.4023 (15)0.0601 (7)	C18	0.7734 (3)	0.9196 (2)	0.16823 (15)	0.0499 (6)
C81.0718 (3)0.9901 (2)0.31896 (14)0.0450 (5)C120.8815 (3)0.7945 (2)0.35031 (15)0.0466 (5)C11.3747 (3)1.2522 (2)0.28323 (15)0.0495 (6)C190.5790 (4)0.9105 (3)0.20650 (17)0.0622 (7)H19A0.53050.93500.25960.075*C230.8423 (4)0.8833 (3)0.08965 (15)0.0612 (7)H23A0.97450.88910.06390.073*C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C9	1.1726 (3)	0.9562 (2)	0.39721 (14)	0.0468 (5)
C120.8815 (3)0.7945 (2)0.35031 (15)0.0466 (5)C11.3747 (3)1.2522 (2)0.28323 (15)0.0495 (6)C190.5790 (4)0.9105 (3)0.20650 (17)0.0622 (7)H19A0.53050.93500.25960.075*C230.8423 (4)0.8833 (3)0.08965 (15)0.0612 (7)H23A0.97450.88910.06390.073*C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C8	1.0718 (3)	0.9901 (2)	0.31896 (14)	0.0450 (5)
C11.3747 (3)1.2522 (2)0.28323 (15)0.0495 (6)C190.5790 (4)0.9105 (3)0.20650 (17)0.0622 (7)H19A0.53050.93500.25960.075*C230.8423 (4)0.8833 (3)0.08965 (15)0.0612 (7)H23A0.97450.88910.06390.073*C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C12	0.8815 (3)	0.7945 (2)	0.35031 (15)	0.0466 (5)
C190.5790 (4)0.9105 (3)0.20650 (17)0.0622 (7)H19A0.53050.93500.25960.075*C230.8423 (4)0.8833 (3)0.08965 (15)0.0612 (7)H23A0.97450.88910.06390.073*C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C1	1.3747 (3)	1.2522 (2)	0.28323 (15)	0.0495 (6)
H19A0.53050.93500.25960.075*C230.8423 (4)0.8833 (3)0.08965 (15)0.0612 (7)H23A0.97450.88910.06390.073*C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C19	0.5790 (4)	0.9105 (3)	0.20650 (17)	0.0622 (7)
C230.8423 (4)0.8833 (3)0.08965 (15)0.0612 (7)H23A0.97450.88910.06390.073*C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	H19A	0.5305	0.9350	0.2596	0.075*
H23A0.97450.88910.06390.073*C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C23	0.8423 (4)	0.8833 (3)	0.08965 (15)	0.0612 (7)
C130.9534 (4)0.6814 (2)0.32642 (18)0.0598 (6)H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	H23A	0.9745	0.8891	0.0639	0.073*
H13A1.04210.68540.27270.072*C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C13	0.9534 (4)	0.6814 (2)	0.32642 (18)	0.0598 (6)
C200.4556 (4)0.8647 (3)0.16570 (17)0.0620 (7)H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	H13A	1.0421	0.6854	0.2727	0.072*
H20A0.32400.85750.19230.074*C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C20	0.4556 (4)	0.8647 (3)	0.16570 (17)	0.0620(7)
C61.5599 (4)1.2363 (3)0.30841 (17)0.0605 (7)H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	H20A	0.3240	0.8575	0.1923	0.074*
H6A1.61271.15390.34000.073*C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C6	1.5599 (4)	1.2363 (3)	0.30841 (17)	0.0605 (7)
C21.2973 (4)1.3750 (2)0.23493 (17)0.0613 (7)H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	H6A	1.6127	1.1539	0.3400	0.073*
H2B1.17381.38580.21690.074*C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)	C2	1.2973 (4)	1.3750 (2)	0.23493 (17)	0.0613 (7)
C170.7493 (4)0.7871 (2)0.43025 (16)0.0596 (6)H17A0.70100.86250.44760.072*C220.7190 (4)0.8383 (3)0.04823 (15)0.0601 (7)U22 (15)0.26700.01120.02112	H2B	1.1738	1.3858	0.2169	0.074*
H17A 0.7010 0.8625 0.4476 0.072* C22 0.7190 (4) 0.8383 (3) 0.04823 (15) 0.0601 (7) U22 (15) 0.2670 0.0112 0.0212 0.0121	C17	0.7493 (4)	0.7871 (2)	0.43025 (16)	0.0596 (6)
C22 0.7190 (4) 0.8383 (3) 0.04823 (15) 0.0601 (7)	H17A	0.7010	0.8625	0.4476	0.072*
	C22	0.7190 (4)	0.8383 (3)	0.04823 (15)	0.0601 (7)
H22A 0.7678 0.8142 -0.0050 0.072*	H22A	0.7678	0.8142	-0.0050	0.072*
C10 1.1678 (4) 0.8376 (2) 0.47893 (16) 0.0621 (7)	C10	1.1678 (4)	0.8376 (2)	0.47893 (16)	0.0621 (7)
H10A 1.2523 0.8450 0.5191 0.093*	H10A	1.2523	0.8450	0.5191	0.093*
H10B 1.2130 0.7607 0.4592 0.093*	H10B	1.2130	0.7607	0.4592	0.093*

H10C	1.0349	0.8311	0.5109	0.093*
C5	1.6661 (5)	1.3433 (3)	0.28646 (19)	0.0718 (8)
H5A	1.7907	1.3326	0.3034	0.086*
C4	1.5899 (5)	1.4647 (3)	0.24021 (19)	0.0771 (9)
H4A	1.6619	1.5363	0.2264	0.092*
C3	1.4055 (5)	1.4812 (3)	0.21387 (19)	0.0721 (8)
H3B	1.3542	1.5639	0.1819	0.087*
C24	0.4498 (4)	0.7369 (3)	-0.02403 (17)	0.0701 (8)
H24A	0.5562	0.6673	-0.0116	0.084*
H24B	0.4972	0.8059	-0.0776	0.084*
C14	0.8941 (5)	0.5630 (3)	0.3818 (2)	0.0745 (8)
H14A	0.9448	0.4867	0.3661	0.089*
C15	0.7607 (5)	0.5564 (3)	0.4602 (2)	0.0754 (8)
H15A	0.7192	0.4761	0.4970	0.090*
C16	0.6894 (4)	0.6674 (3)	0.48406 (19)	0.0707 (8)
H16A	0.5991	0.6627	0.5374	0.085*
C25	0.2757 (5)	0.6857 (4)	-0.0402 (2)	0.0918 (10)
H25A	0.3131	0.6512	-0.0918	0.138*
H25B	0.1716	0.7554	-0.0525	0.138*
H25C	0.2303	0.6174	0.0132	0.138*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
O2	0.0545 (10)	0.0692 (11)	0.0609 (9)	-0.0116 (8)	-0.0103 (8)	-0.0308 (8)
N1	0.0543 (12)	0.0474 (11)	0.0531 (10)	-0.0130 (9)	-0.0112 (9)	-0.0144 (8)
01	0.0629 (11)	0.0623 (11)	0.0537 (9)	-0.0193 (8)	-0.0154 (8)	-0.0067 (8)
N3	0.0542 (12)	0.0586 (12)	0.0565 (11)	-0.0221 (10)	-0.0102 (9)	-0.0131 (9)
N2	0.0566 (12)	0.0513 (11)	0.0506 (10)	-0.0098 (9)	-0.0113 (9)	-0.0158 (9)
C11	0.0391 (12)	0.0491 (13)	0.0529 (12)	-0.0018 (10)	-0.0039 (9)	-0.0218 (10)
C21	0.0471 (13)	0.0517 (13)	0.0501 (12)	-0.0086 (10)	-0.0095 (10)	-0.0173 (10)
C7	0.0433 (13)	0.0527 (13)	0.0517 (12)	-0.0068 (10)	-0.0045 (10)	-0.0215 (10)
C18	0.0485 (14)	0.0504 (13)	0.0534 (12)	-0.0111 (11)	-0.0123 (10)	-0.0132 (10)
C9	0.0448 (13)	0.0470 (13)	0.0512 (12)	-0.0050 (10)	-0.0044 (10)	-0.0198 (10)
C8	0.0424 (12)	0.0441 (12)	0.0517 (12)	-0.0063 (10)	-0.0050 (9)	-0.0189 (10)
C12	0.0414 (12)	0.0460 (13)	0.0570 (12)	-0.0050 (10)	-0.0101 (10)	-0.0197 (10)
C1	0.0530 (14)	0.0473 (13)	0.0531 (12)	-0.0128 (11)	-0.0025 (10)	-0.0213 (10)
C19	0.0503 (15)	0.0804 (18)	0.0705 (15)	-0.0101 (13)	-0.0020 (12)	-0.0454 (14)
C23	0.0470 (14)	0.0873 (19)	0.0517 (13)	-0.0215 (13)	-0.0002 (11)	-0.0209 (12)
C13	0.0584 (16)	0.0558 (15)	0.0727 (15)	-0.0070 (12)	-0.0074 (12)	-0.0305 (13)
C20	0.0422 (13)	0.0809 (18)	0.0745 (16)	-0.0096 (12)	0.0002 (11)	-0.0430 (14)
C6	0.0614 (16)	0.0618 (16)	0.0677 (15)	-0.0135 (13)	-0.0154 (12)	-0.0254 (12)
C2	0.0619 (16)	0.0531 (15)	0.0706 (15)	-0.0126 (13)	-0.0072 (12)	-0.0187 (12)
C17	0.0558 (15)	0.0541 (15)	0.0683 (15)	-0.0092 (12)	0.0025 (12)	-0.0221 (12)
C22	0.0552 (15)	0.0810 (18)	0.0462 (12)	-0.0155 (13)	0.0017 (11)	-0.0230 (12)
C10	0.0669 (17)	0.0562 (15)	0.0618 (14)	-0.0110 (13)	-0.0139 (12)	-0.0104 (12)
C5	0.0719 (18)	0.078 (2)	0.0764 (17)	-0.0316 (16)	-0.0116 (14)	-0.0269 (15)
C4	0.093 (2)	0.072 (2)	0.0765 (18)	-0.0439 (17)	-0.0014 (16)	-0.0270 (16)

C3	0.085 (2)	0.0532 (16)	0.0747 (17)	-0.0200 (15)	-0.0042 (15)	-0.0128 (13)
C24	0.0717 (18)	0.093 (2)	0.0563 (14)	-0.0117 (15)	-0.0104 (13)	-0.0342 (14)
C14	0.084 (2)	0.0499 (16)	0.102 (2)	-0.0068 (14)	-0.0240 (18)	-0.0336 (15)
C15	0.075 (2)	0.0558 (17)	0.093 (2)	-0.0218 (15)	-0.0171 (17)	-0.0084 (15)
C16	0.0628 (17)	0.0667 (19)	0.0743 (17)	-0.0174 (14)	0.0019 (13)	-0.0105 (14)
C25	0.088 (2)	0.129 (3)	0.088 (2)	-0.014 (2)	-0.0289 (17)	-0.062 (2)
Geometric paran	neters (Å, °)					
O2—C21		1.361 (3)	C13	—Н13А	0.930	00
O2—C24		1.425 (3)	C20	—Н20А	0.930	0
N1—C7		1.380 (3)	C6-	C5	1.381	(4)
N1—N2		1.400 (2)	C6-	—Н6А	0.930	0
N1-C1		1.409 (3)	C2-	—С3	1.384	(4)
O1—C7		1.249 (3)	C2-	–H2B	0.930	0
N3—C11		1.333 (3)	C17		1.378	(3)
N3—C18		1.433 (3)	C17	—Н17А	0.930	0
N3—H3A		0.8600	C22	—Н22А	0.930	0
N2—C9		1.305 (3)	C10	—Н10А	0.960	0
C11—C8		1.392 (3)	C10	—H10B	0.960	0
C11—C12		1.480 (3)	C10	—Н10С	0.960	0
C21—C22		1.375 (3)	C5-	C4	1.364	(4)
C21—C20		1.378 (3)	C5-	-H5A	0.930	0
С7—С8		1.438 (3)	C4-	—С3	1.384	(4)
C18—C19		1.369 (3)	C4-	-H4A	0.930	0
C18—C23		1.374 (3)	C3-	—Н3В	0.930	0
С9—С8		1.439 (3)	C24	—C25	1.492	2 (4)
C9—C10		1.496 (3)	C24	—H24A	0.970	0
C12—C13		1.378 (3)	C24	—H24B	0.970	0
C12—C17		1.383 (3)	C14	—C15	1.371	(4)
C1—C6		1.382 (3)	C14	—H14A	0.930	0
C1—C2		1.389 (3)	C15	—C16	1.357	' (4)
C19—C20		1.380 (3)	C15	—Н15А	0.930	0
C19—H19A		0.9300	C16	—Н16А	0.930	0
C23—C22		1.381 (3)	C25	—Н25А	0.960	0
С23—Н23А		0.9300	C25	—Н25В	0.960	0
C13—C14		1.373 (4)	C25	—Н25С	0.960	0
C21—O2—C24		118.67 (19)	C1-	—С6—Н6А	120.1	
C7—N1—N2		111.88 (18)	C3-		119.4	(3)
C7—N1—C1		128.75 (19)	C3-	—С2—Н2В	120.3	
N2-N1-C1		119.18 (18)	C1-	—С2—Н2В	120.3	
C11—N3—C18		127.2 (2)	C16	—C17—C12	119.6	(2)
C11—N3—H3A		116.4	C16	—С17—Н17А	120.2	
C18—N3—H3A		116.4	C12	—С17—Н17А	120.2	
C9—N2—N1		106.65 (17)	C21	—C22—C23	119.4	(2)
N3—C11—C8		118.0 (2)	C21	—С22—Н22А	120.3	
N3—C11—C12		118.73 (19)	C23	—С22—Н22А	120.3	
C8—C11—C12		123.23 (19)	С9-	C10H10A	109.5	
O2—C21—C22		125.5 (2)	С9-	—С10—Н10В	109.5	

O2—C21—C20	115.4 (2)	H10A—C10—H10B	109.5
C22—C21—C20	119.1 (2)	C9—C10—H10C	109.5
01—C7—N1	125.8 (2)	H10A—C10—H10C	109.5
O1—C7—C8	129.6 (2)	H10B—C10—H10C	109.5
N1—C7—C8	104.61 (18)	C4—C5—C6	120.6 (3)
C19—C18—C23	119.4 (2)	C4—C5—H5A	119.7
C19-C18-N3	120.7 (2)	C6—C5—H5A	119.7
C23—C18—N3	119.9 (2)	C5—C4—C3	120.1 (3)
N2-C9-C8	111.37 (19)	С5—С4—Н4А	120.0
N2-C9-C10	118.4 (2)	C3—C4—H4A	120.0
C8—C9—C10	130.2 (2)	C4—C3—C2	120.1 (3)
C11—C8—C7	122.44 (19)	C4—C3—H3B	119.9
C11—C8—C9	131.8 (2)	С2—С3—Н3В	119.9
С7—С8—С9	105.41 (19)	O2—C24—C25	107.2 (2)
C13—C12—C17	119.3 (2)	O2—C24—H24A	110.3
C13—C12—C11	119.8 (2)	C25—C24—H24A	110.3
C17—C12—C11	120.8 (2)	O2—C24—H24B	110.3
C6—C1—C2	120.1 (2)	C25—C24—H24B	110.3
C6-C1-N1	119.5 (2)	H24A—C24—H24B	108.5
C2-C1-N1	120.4 (2)	C15—C14—C13	120.4 (3)
C18—C19—C20	119.5 (2)	C15—C14—H14A	119.8
C18—C19—H19A	120.3	C13—C14—H14A	119.8
С20—С19—Н19А	120.3	C16—C15—C14	119.8 (3)
C18—C23—C22	121.3 (2)	C16—C15—H15A	120.1
C18—C23—H23A	119.4	C14—C15—H15A	120.1
С22—С23—Н23А	119.4	C15—C16—C17	120.8 (3)
C14—C13—C12	120.0 (2)	C15—C16—H16A	119.6
C14—C13—H13A	120.0	C17—C16—H16A	119.6
C12—C13—H13A	120.0	C24—C25—H25A	109.5
C21—C20—C19	121.3 (2)	C24—C25—H25B	109.5
C21—C20—H20A	119.4	H25A—C25—H25B	109.5
C19—C20—H20A	119.4	C24—C25—H25C	109.5
C5—C6—C1	119.7 (3)	H25A—C25—H25C	109.5
C5 C6 46A	120.1	H25B_C25_H25C	109.5

ometry (A, °) IJ og ge

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3A···O1	0.86	1.98	2.700 (3)	140

Fig. 1